• INFREQUENT ENGAGEMENT, e.g. power take-offs, compressor drives

- HIGH INERTIA ACCELERATION OR EMERGENCY "E" STOP, e.g. high inertia fans, coal pulverizers
- FREQUENT OR CYCLIC STARTS AND STOPS, e.g. punch presses, shears
- CONTINUAL SLIP OR CONSTANT TENSIONING, e.g. steel unwinders, paper tensioners

Before these four categories are individually dealt with, some fundamentals in connection with clutch/brake selection will be discussed. These fundamentals, including WK² and placement of the clutch in drive, are used in many (though not all) applications.

 WK², ROTATIONAL INERTIA OF A UNIT (also called WR²). It is a measure of the unit's resistance to rotational speed change. Hence, WK² is a crucial factor in selection of a majority of clutches and brakes involving a change of RPM.

The torque required to accelerate a rotating body is the product of its mass moment of inertia (I) and the angular acceleration (**a**):

gt

The WK² value of a system determines the time required to accelerate the system to a desired speed, given a certain torque. If the proper units are introduced,

1E	1M
WK² (ΔRPM)	WK² (ΔRPM)
25.6 (t)	9.55 (t)
Where T (InLB), WK ² (Lb Ft ²), t (sec)	Where T (NM), WK ² (KgM ²), t (sec)

The WK² of every rotating part that the brake must stop or the clutch must bring to speed, including it's own inertia, must be accounted for in this calculation.

WK² values of all Carlson Co. clutches and brakes are given in this ENGINEERING SECTION.

There is also a page in this section that lists WK² of steel discs.

If any part of the load is to operate at a speed other than clutch speed, WK² must be

compensated by means of the formula:

Formula 2

$$WK_{e}^{2}=WK_{a}^{2}\left[\frac{RPM}{RPM_{c}}\right]^{2}$$

 WK_{a}^{2} = equivalent or reflected WK^{2} referred to clutch speed WK_{a}^{2} = actual WK^{2} of load

RPM=speed of load Rpm_=speed of clutch

EXAMPLE:

Size a CARLSON CO. brake to stop a disc 13" (330 mm) diameter and 1 1/4" (32 mm) thick revolving at 2,000 RPM on a 2" (50 mm) diameter shaft 15" (380 mm) long. The brake is to be mounted on a 500 RPM shaft of 2 $\frac{1}{2}$ " (63.5 mm) diameter and 15" (380 mm) length. The gear on the high speed shaft has a WK² value of .015 LbFt² (.0006 KgM²). The WK² VALUE of the gear on the slow shaft is 4 Lb Ft² (.1687 KgM²). The system must be stopped within 1/5 second. Air pressure available is 90 PSI. The customer

SOLUTION:

The brake must stop the load inertia within 1/5 second. First, a rough estimate of its torque requirement can be made using Formula 1:

Gear

ENGL	METRIC			
WΚ²Δ	$T = WK^2 \Delta RPM$			
1=	9.55 (t)			
Total WK ² of components on high sp	eed shaft:			
WK ² of disc*=5.58X1.25	= 6.872	= .2914		
WK ² of 2" shaft*=.0031X15	= .046	= .0018		
WK ² of gear	<u>= .015</u>	<u>= .0006</u>		
	6.933 Lb Ft ²	.2938 KgM ²		

WK² of high-speed shaft reflected to brake shaft (using Formula 2):

$6.933 \left[\frac{2000}{500} \right]^2$	= '	110.930	=4.7008
WK ² of gear	=	4.000	= .1687
WK ² of 2 ½" shaft*	=	.113	= .0047
Total WK^2 of the system to be stopped (rated at brake speed)	-	115 LbFt ²	4.8742 KgM ²

T = <u>115 (500)</u>	T = <u>4.8742 (500)</u>
. 25.6 (.2)	9.55 (.2)
= 11,230 In Lb	= 1,275 NM

Brake

A Carlson Co. BK model brake is suitable for this application	ation. The torque ratir	ng of a 12" brake at 90psi
is 19,588 In Lb. (2,213 NM) This allows a service factor	= <u>19,588</u> =1.74	= <u>2,213</u> =1.74
	11,230	1,275

*From table "WK2 of steel Disc."

A Carlson Co. 12BK can be tentatively selected for this application. The final selection can not be made until after including the WK² of the brake in the calculation.

WK² of rotating parts of a 12BK brake=8.47 Lb Ft² (.3573 KgM²)

Total WK² of the system becomes 115 + 8.47 =123.47 Lb Ft² (4.8742 + .3573 = 5.23 KgM²) Now the time required to stop the system can be calculated by rewriting Formula 1:

$t = \frac{WK^2 \Delta RPM}{25.6 (T)}$	$t = \frac{WK^2 \Delta RPM}{9.55 (T)}$
$= \frac{123.47 (500)}{25.6 (19,588)}$	$= \frac{5.23 (500)}{9.55 (2,213)}$
= .123 sec.	= .123 sec.
Service Factor = <u>.2</u> = 1.6	Service Factor = <u>.2</u> = 1.6
.123	.123

The Carlson Co. 12BK brake will be suitable for this application.

2) SERVICE FACTOR FOR EVALUATING TORQUE REQUIREMENTS:

The type of prime mover driving the system strongly influences the choice of the clutch.

(A) Light duty or a steady power source with no shock or overloads:

A service factor of 1.5 is typical for these applications.

(B) **Normal duty** or a steady power source with occasional surge and/or shock or overload of moderate size: A service factor of 2.0 is recommended.

(C) Heavy duty or equipment with severe shock loads, high surges, continual overloads, or

pulsating power sources: Service factor for heavy duty clutches should be a least 3.

3) LOCATION OF THE CLUTCH

The moderate speed shaft is, in most cases, the best place to install the clutch; providing a good balance between clutch durability and initial expense.

The clutch on the high speed shaft will be smaller in size and thus have less dissipation

capacity and lining area. The clutch required on the low-speed shaft will be large and relatively expensive. A clutch located on a medium speed shaft will have few balance or bearing failure problems.

The diameter of the mounting shaft must be verified to lie in the range between the minimum and maximum bore sides of the chosen clutch given in this catalog.

HEAVY DUTY INDUSTRIAL AIR CLUTCHES

INERTIA (WK²)

CLUTCH	(C	MOE NE OUT	DEL CW SIDE PLAT	Е)*	MODEL CR (TWO OUTSIDE PLATES)**				ALL MODELS TORQUE ASSY.			
SIZE (INCHES)	W		WK ²		W		WK ²		W		WK ²	
(Lb	(Kg)	Lb Ft ²	(KgM ²)	Lb	(Kg)	Lb Ft ²	(KgM ²)	Lb	(Kg)	Lb Ft ²	(KgM ²)
8.5 10 12 14	8.4 10.9 18.0 26.0	3.8 4.9 8.2 11.8	0.92 1.59 3.80 6.90	.0388 .0670 .1602 .2910	19.0 23.9 40.5 52.0	8.6 10.9 18.4 23.6	2.10 3.43 8.47 12.45	.0886 .1447 .3574 .5253	10.3 15.0 20.8 32.0	4.7 6.8 9.4 14.5	0.70 1.35 2.79 5.90	.0295 .0569 .1176 .2488
16 18 20 22	37.0 48.0 70.5 85.4	16.8 21.8 32.0 38.8	12.40 20.57 37.74 54.02	.5230 .8676 1.591 2.278	76.9 102.0 145.5 174.5	34.9 46.3 66.1 79.2	23.16 40.00 71.84 102.60	.9773 1.688 3.031 4.329	41.1 50.0 73.5 93.5	18.7 22.7 33.4 42.4	9.57 14.64 26.30 40.10	.0436 .6175 1.109 1.619
25 28 32 36	134.9 189.0 260.0 390.5	61.2 85.8 118.0 77.3	110.29 182.80 334.60 618.80	4.652 7.710 14.11 26.10	266.9 384.0 550.0 824.0	121.2 174.3 249.7 374.1	199.90 357.60 667.00 1208.40	8.435 1.509 2.814 5.099	136.0 185.5 267.5 430.0	61.7 84.2 121.4 195.2	76.05 122.20 233.80 363.28	3.208 5.154 9.861 15.32

*Includes Pressure Plate & Cap Screws and Spacers.

**Includes Pressure Plate, Backplate, Cap Screws and Spacers.

WFIGHT (W)

SHOE BRAKE DRUM

INERTIA (WK²) Lb Ft² WEIGHTS (W) lbs. BORE DIAMETER WEIGHT WK² MODEL SIZE INCHES Lb In mm Kg Lb Ft² KgM² 16.2 7 2.40 60.96 7.4 1.152 .0485 10 3.00 76.20 37.3 16.9 4.740 1999 3.00 76.20 92.4 41.9 15.590 14 .6575 18 3.00 76.20 158.9 72.1 46.060 1.943 24 4.00 101.60 444.5 201.8 232.600 9.811

APPLICATION CATEGORIES:

Infrequent engagement is a common application. A machine falls into this category if it is of relatively low inertia and cycles at a rate of less than seven times per hour. The clutch must disconnect the prime mover from the machine at irregular intervals. The foremost criterion is estimating clutch torque based on rated horsepower of the prime mover:

$$T = P/RPM \qquad Formula \ \mathbf{3}$$

$$T = \frac{\mathbf{3}E}{RPM} \qquad T = \frac{5,310 \text{ KW}}{RPM}$$

$$Where T = (In Lb) \qquad Where T = (NM)$$

The above method is not valid when the application demands frequent engagements, prolonged acceleration and/or deceleration periods, or high inertia loads.

If the unit is to be a brake, it is often required to bring the load to a stop in an acceptable period. The time in seconds required to accelerate or decelerate a rotating mechanism:

$$t = \frac{WK^2 (\Delta RPM)}{gT} \text{ Formula 4}$$

$$t = \frac{4E}{25.6 \text{ (T)}} t = \frac{WK^2 (\Delta RPM)}{9.55 \text{ (T)}}$$
Where Where t (sec), WK² (Lb Ft²), T (In Lb) t (sec), WK² (KgM²), T (NM)

In some applications the clutch is performing load work while bringing the load inertia up to speed. In such cases, the clutch is required to not only bring the inertia of the load (flywheel, etc.) to speed, but also carry the torque of the load. Acceleration time then is:

$$t = \underbrace{WK^2 \Delta RPM}_{g \text{ (clutch torque - load torque)}}$$

The above formula indicates that when the rated torque of the chosen clutch is close to the load torque, the acceleration period and hence the heat generated will be large. In such a case, a larger clutch is recommended. If any part of the load is to operate at a speed other than clutch speed, WK² must be compensated by means of Formula 2:

For occasional start stop, if possible, put the clutch or brake on the high speed shaft where torque is lowest.

High inertia start/stop applications involve heavy rotating rolls or flywheels. Engagement is infrequent but takes longer than in category #1, occasional start/stop. Any situation where the start/stop period is more than ½ second should definitely be brought under this category.

Form 1E	1M
$T = \frac{WK^2(\Delta RPM)}{25.6 \text{ (t)}}$	$T = \frac{WK^2(\Delta RPM)}{9.55 (t)}$
Where T (In Lb), WK ² (Lb Ft ²), t (sec)	Where T (NM), WK² (KgM²),t (sec)

Again, Formula 2 has to be used along with Formula 1 for parts driven by clutch and not rotating at clutch speed.

Any body which goes through a change in RPM undergoes a change of kinetic energy:

$$\begin{split} \text{KE} &= \ \frac{\text{WK}^2 \ (\text{RPM}_2^{2-} \ \text{RPM}_1^2)}{2g} \quad \text{Formula 5} \\ & \textbf{5E} \qquad \textbf{5M} \\ \text{KE} &= \ \frac{\text{WK}^2 \ (\text{RPM}_2^{2-} \ \text{RPM}_1^2)}{5,868} \quad \text{KE} &= \ \frac{\text{WK}^2 \ (\text{RPM}_2^{2-} \ \text{RPM}_1^2)}{183} \\ \end{split} \\ \end{split}$$

Each time the rotating parts change speed or are brought to a stop, heat equivalent to this energy is generated at the clutch (or brake) interface. In high inertia applications, clutch/brake heat sink values can be utilized, because the unit has time to cool between starts and stops. The clutch or brake is to be sized such that the rated heat sink value on Table 3 exceeds the value from Formula 5.

EXAMPLE:

A flywheel with a WK² value of 4,000 LbFt² (169 KgM²) needs to be brought up to a speed of 1,375 RPM within two seconds. Size a Carlson Co. clutch for this application driven by a four-cylinder engine. All the driven and drive components are to be installed on the same shaft. 90 psi (6 Bar) air is available for the clutch.

SOLUTION:

The high WK2 value of 4,000 LbFt² (169 KgM²), and an acceleration period longer than $\frac{1}{2}$ second indicates that this application is in the "High inertia start/stop" category.

The first step is the determination of torque requirement using Formula 1

ENGLISH
$$T = \frac{(4,000) (1,375)}{25.6(2)} = 107,250 \text{ In Lb}$$

METRIC

$$T = \frac{(169) (1,375)}{9.55(2)} = 12,166 \text{ NM}$$

Since the prime mover is a four-cylinder engine operating above 700 RPM, a safety factor of 2.2 is recommended. So torque requirement=107,250 (2.2)=235,950 InLb (26,765 NM). A Carlson Co. model CW clutch is suitable for this application since there is a flywheel to which the clutch can be mounted on directly. A 25" clutch can be selected, which has a rating of 237,227 In Lb @ 90 psi (26,802 NM @ 6 Bar).

The heat sink requirement is determined using Formula 5

ENGLISH

$$KE = \frac{4,000(1,375-0^2)}{5,868} = 1,285,000 \text{ Ft Lb}$$

A Carlson Co. 25 CW clutch has a rated heat sink value (Table 3)=10 million ft-lb (13.6 million Joule). The chosen clutch has the heat capacity required for this application. Therefore, the selection is a 25 CW clutch.

CYCLIC START-STOP applications are encountered in process machinery where stock is precisely located and then sheared stamped or formed. In contrast to the `Infrequent Engagement' category, the cycling rate of the clutch in this category is at least seven times an hour.

First the clutch is sized based on torque requirement calculated using Formulas 1 and 2.

Next the heat dissipation capacity of the clutch must be compared to the heat generated in the application.

$$P = \frac{WK^{2} (RPM_{2}^{2} - RPM_{1}^{2}) (f)}{2g}$$
 Formula 6

$$P = \frac{WK^2 (RPM_2^2 - RPM_1^2) (f)}{1.936 X 10^8}$$

Where P (HP), WK² (Lb Ft²), f (Cycles/Min.)

6M

$$P = \frac{WK^2 (RPM_2^2 - RPM_1^2) (f)}{10.9 \times 10^6}$$

Where

P (KW), WK² (KgM²), f (Cycles/Min.)

The factory should be consulted to determine if the rated heat dissipation value of the chosen clutch is enough to meet the thermal HP requirement calculated using Formula 6.

EXAMPLE:

Calculate the continuous heat dissipation requirement of a clutch which is required to bring a load inertia of $1,000 \text{ LbFt}^2$ (42.2 KgM²) from rest to 1,800 RPM every six minutes.

SOLUTION:

Find the continuous heat dissipation required using formula 6.

ENGLISH
$$\frac{P = 1,000 (1,800^2 - 0) .166}{1.936 \times 10^8} = 2.8 \text{ HF}$$

METRIC
$$\frac{P = 42.2 (1,800^2 - 0) .166}{10.9 \times 10^6} = 2.1 \text{ KW}$$

TABLE 1

STATIC TORQUE In Lb (NM) VS. AIR PRESSURE PSI (BAR)

USING STANDARD LINING (.42 COEFFICIENT OF FRICTION)

	SIZE											
PSI (Bar)	8.5	10	12	14	16	18	20	22	25	28	32	36
10	330	1031	1454	3386	4214	7681	8673	14027	21008	34557	43169	73992
(0.68)	(37.3)	(116.5)	(164.3)	(382.6)	(476.2)	(867.9)	(980)	(1585.1)	(2373.9)	(3904.9)	(4878.1)	(8361.1)
20	896	2336	3721	7695	10497	17682	21369	32469	48035	75828	100055	163370
(1.36)	(101.2)	(263.9)	(420.5)	(869.5)	(1186.2)	(1998)	(2414.7)	(3668.9)	(5427.9)	(8568.6)	(11306.2)	(18460.8)
30	1462	3642	5988	12004	16781	27682	34065	50911	75063	117090	156941	252748
(2.04)	(165.2)	(411.5)	(676.6)	(1356.5)	(1896.3)	(3128.1)	(3849.3)	(5752.9)	(8482.1)	(13231.2)	(17734.3)	(28560.5)
40	2027	4947	8254	16313	23064	37682	46760	69352	102090	158370	213826	342126
(2.72)	(229.1)	(559)	(932.7)	(1843.4)	(2606.2)	(4258.1)	(5283.8)	(7836.8)	(11536.2)	(17895.8)	(24162.3)	(38660.2)
50	2593	6253	10521	20621	29347	47683	59456	87794	129118	199641	270712	431504
(3.4)	(293)	(706.6)	(1188.9)	(2330.1)	(3316.2)	(5388.2)	(6718.5)	(9920.7)	(14590.3)	(22559.4)	(30590.5)	(48759.9)
60	3158	7558	12788	24930	35630	57683	72152	106236	156145	240912	327598	520881
(4.08)	(356.9)	(854.1)	(1445)	(2817.1)	(4026.2)	(6518.2)	(8153.2)	(12004.7)	(17644.4)	(27223.1)	(37018.6)	(58859.5)
70	3724	8864	15055	29239	41913	67684	84847	124678	183172	282183	384484	610259
(4.76)	(420.8)	(1001.6)	(1701.2)	(3304)	(4736.69)	(7648.3)	(9587.7)	(14088.6)	(20698.4)	(31886.7)	(43446.7)	(68959.3)
80	4290	10169	17322	33548	48196	77684	97543	143120	210200	323454	441370	699637
(5.44)	(484.8)	(1149.1)	(1957.4)	(3790.9)	(5446.1)	(8778.3)	(11022.4)	(16172.6)	(23752.6)	(36550.3)	(49874.8)	(79058.9)
90	4855	11475	19588	37857	54479	87685	110239	161562	237227	364725	498256	789015
(6.12)	(548.6)	(1296.7)	(2213.4)	(4277.8)	(6156.1)	(9908.4)	(12457)	(18256.5)	(26806.7)	(41213.9)	(56302.9)	(89158.7)
100	5421	12780	21855	42166	60762	97685	122935	180004	264255	405996	555142	875393
(6.8)	(612.6)	(1444.1)	(2469.6)	(4764.8)	(6866.1)	(11038.4)	(13891.7)	(20340.5)	(29860.8)	(45877.5)	(62731)	(98919.4)
110	5986	14086	24122	46475	67045	107686	135630	198445	291282	447267	612028	967771
(7.48)	(676.4)	(1591.7)	(2725.8)	(5251.7)	(7576.1)	(12168.5)	(15326.2)	(22424.3)	(32914.9)	(50541.2)	(69159.2)	(109358.1)
120	6552	15391	26389	50784	73328	117686	148326	216887	318310	448538	668914	1057149
(8.16)	(740.4)	(1739.2)	(2981.9)	(5738.6)	(8286.1)	(13298.5)	(16760.8)	(24509.2)	(35968)	(50684.8)	(75587.3)	(119457.8)

TABLE 2

FOR TENSION OR CONTINUAL SLIP APPLICATION

DYNAMIC TORQUE In Lb (NM) VS AIR PRESSURE PSI (Bar) USING LO(CO LINING (.139 COEFFICIENT OF FRICTION)

	SIZE											
PSI (Bar)	8.5	10	12	14	16	18	20	22	25	28	32	36
10	109	341	481	1121	1395	2542	2870	4642	6953	11437	14287	24488
(0.68)	(12.3)	(38.5)	(54.4)	(126.7)	(157.6)	(287.2)	(324.3)	(524.5)	(785.7)	(1292.4)	(1614.4)	(2767.1)
20	297	773	1231	2547	3474	5852	7072	10746	15897	25096	33113	54068
(1.36)	(33.6)	(87.3)	(139.1)	(287.8)	(392.6)	(661.3)	(799.1)	(1214.3)	(1796.40)	(2835.8)	(3741.8)	(6109.7)
30	484	1205	1982	3973	5554	9161	11274	16849	24842	38754	51940	83647
(2.04)	(54.7)	(136.2)	(224)	(449)	(627.6)	(1035.2)	(1274)	(1904)	(2807.1)	(4379.2)	(5869.2)	(9452.1)
40	671	1637	2732	5399	7633	12471	15474	22952	33787	52413	70766	113227
(2.72)	(75.8)	(184.9)	(308.8)	(610.1)	(862.5)	(1409.2)	(1748.6)	(2593.6)	(3818)	(5922.7)	(7996.5)	(12794.6)
50	858	2069	3482	6825	9712	15781	19677	29056	42732	66072	89593	142807
(3.4)	(96.9)	(233.8)	(393.5)	(771.2)	(1097.5)	(1783.3)	(2223.5)	(3283.3)	(4828.7)	(7466.1)	(10124)	(16137.2)
60	1045	2501	4232	8251	11792	19090	23879	35159	51677	79730	108419	172387
(4.08)	(118.1)	(282.6)	(478.2)	(932.4)	(1332.5)	(2157.2)	(2698.3)	(3973)	(5839.5)	(9009.5)	(12251.3)	(19479.7)
70	1232	2933	4982	9677	13871	22400	28080	51262	60621	93389	127246	201967
(4.76)	(139.2)	(331.4)	(563	(1093.5)	(1567.4)	(2531.2)	(3173	(5792.6	(6850.2)	(10553)	(14378.8)	(22822.3)
80	1420	3366	5733	11103	15951	25710	32282	47366	69566	107048	146072	231547
(5.44)	(160.5)	(380.3)	(647.8)	(1254.6)	(1802.5)	(2905.2)	(3648	(5352.4)	(7860.9)	(12096.4)	(16506.1)	(26164.8)
90	1607	3798	6483	12529	18030	29019	36484	53469	78511	120707	164899	261126
(6.12)	(181.6)	(429.2)	(732.6)	(1415.8)	(2037.4)	(3279.1)	(4122.7)	(6042)	(8871.7)	(13639.9)	(18633.6)	(29507.2)
100	1794	4230	7233	13955	20109	32329	40686	59573	87456	134365	183725	290706
(6.8)	(202.7)	(478)	(817.3)	(1577	(2272.3)	(3653.2)	(4597.5)	(6731.7)	(9882.5)	(15183.2)	(20760.9)	(32849.7)
110	1981	4662	7983	15381	22189	35639	44887	65676	96401	148024	202552	320286
(7.48)	(223.9)	(526.8)	(902.10	(1738.1)	(2507.4)	(4027.2)	(5072.2)	(7421.4)	(10893.3)	(16726.7)	(22888.4)	(36192.3)
120	2168	5094	8733	16807	24268	38949	49089	71779	105345	161683	221379	349866
(8.16)	(244.90)	(575.6)	(986.8)	(1899.2)	(2742.3)	(4401.2)	(5547.1)	(8111)	(11903.9)	(18270.2)	(25015.8)	(39534.9)

TABLE 3

RATED HEAT SINK VALUE

C	CLUTCH SIZE	KINETIC ENERGY ABSORTION MILLION OF FT-LB (MILLION OF JOULE)	SHOE BRAKE SIZE	KINETIC ENERGY ABSORPTION MILLION OF FT-LB (MILLION OF JOULE)
	8.5 10 12 14	.71 (.97) .89 (1.21) 1.52 (2.07) 1.95 (2.65)	7 10 14 18 24	.35 (.476) 1.06 (1.44) 2.83 (3.85) 4.78 (6.50) 14.16 (19.26)
	16 18 20 22	2.88 (3.92) 3.82 (5.20) 5.44 (7.40) 6.53 (8.88)		
	25 28 32 36	10.00 (13.60) 14.27 (19.41) 20.58 (28.20) 30.84 (41.94)		

Continuous Slip applications always require a high heat dissipation capacity of the clutch or brake. LO-CO LINING (coefficient of friction=.14) must be specified for slip applications. A common slip application is the tension control of winding or unwinding rolls of paper, fabric, foils, etc. The following data is required to size a clutch or brake for this type of application.

1. Roll diameter (O.D.)

2. Core diameter (I.D.)

- 3. Web Width(W)
- 4. Unit Web Tension (U)
- 5. Web Speed (S)

From these calculate secondary data

1. Web Tension = W (U)

2. Maximum Torque = O.D. (W) (U)/2

3. Minimum Torque = I.D. (W) (U)/2

4. Maximum RPM = S/ π I.D.

5. Minimum RPM = S/ π O.D.

WINDING (CLUTCH):

A winding operation is usually done by turning the input to the clutch at a constant RPM and driving the wind-up roll with the output side of the clutch. The slip RPM increases as the roll builds up. First calculate the heat to be dissipated. Slip clutch heat

P= Maxim	Formula 7		
	7E		7M
$P = \frac{O.D.}{100}$	V) (U)	$-\frac{12(S)}{WOD}$ $P = \frac{O.D.(W)}{12(200)}$	$\frac{(U)}{(BBM} = \frac{60 (S)}{HOD}$

126,050 $(\text{RPM}_{in} - \pi 0.D.)^{+}$ 10,620 ($RPM_{in} = \pi O.D.$) Where Where

P (HP), O.D. (In), W In), U (Lb/In), S (Ft/Min) P (KW), O.D. (M), W (M), U (N/M), S (M/sec)

The heat dissipation capacity of the clutch increases with it's RPM.

Use the capacity at the minimum RPM.

Next check that the maximum and minimum torgues are both within the clutch capacity with engagement pressures from 6 - 60 PSI, and with LO-CO lining.

UNWIND (BRAKE):

An unwind operation is usually done by applying brake torque to the roll producing the desired web tension.

The slip RPM increase as the roll gets smaller. Most unwind operation are considered constant velocity.

Slip brake heat

P = W (U) S	Formula 8
$P = -\frac{8E}{33,000}$	$P = \frac{W (U) S}{556}$
Where P (HP), W (In), U (Lb/In), S (Ft/ Min)	Where P (KW), W (M), U (N/M), S (M/sec)

EXAMPLE 1

What is the torgue and dissipation capacity required for a clutch on a winding application of brass sheet. The core diameter is 10" (.254 M) and is it is rolled up to 36" (.914 M) diameter. The material is 60" (1.524 M) wide and has a unit tension of 15 Lb/In (2,627 N/M). Web speed is 200 Ft/Min (1.02 M/sec). Input RPM is 75.

SOLUTION:

MAXIMUM TORQUE = $\frac{O.D.(W) U}{2}$

ENGLISH METRIC <u>36 (60) 15</u> = 16,200 In Lb <u>.914 (1.524) 2,627</u> = 1,830 NM 2

MINIMUM RPM = S/ π (O.D.)

ENGLISH

MINIMUM RPM =
$$\frac{36 (12)}{\pi (36)}$$
 = 21 RPM

METRIC

MINIMUM RPM = $\frac{1.02 (60)}{\pi (.914)}$ = 21 RPM

Find heat dissipation required using formula 7

ENGLISH	METRIC
$P = \frac{36(60)(15)}{126,050}(75-21)$	P= <u>-914(1.524)2,627</u> (75-21) 10,620
=.257 (54) = 13.9 HP	=.345 (54) = 18.61 KW

Note: The clutch for this application must be able to dissipate the above power @ 22 RPM.

EXAMPLE 2: What is the torque and heat dissipation requirements for a brake tensioning a paper roll unwind. Web speed is 600 Ft/ Min (3 M/sec)

The roll diameter is 72" (1.83 M) and the core diameter is 10" (.254M) The material is 60" (1.524 M) wide and has a unit tension of 1.665 Lb/In (289 N/M).

SOLUTION:

MAXIMUM TORQUE = $\frac{O.D.(W)}{2}$

ENGLISH	METRIC
<u>72 (60) 1.65</u> =7,128 InLb	$\frac{1.83 (1.524) 289}{2} = 806 \text{ NM}$
MINIMUM RPM = S/ π (O.D.)	

METDIC

ENGLISH	METRIC
<u>600 (12)</u> = 32 BPM	3(60) = 32 BPM
$\pi(72)$	π(1.83)

Find heat dissipation required using formula 8.

ENGLISH

P = W(U)S = 60(1.65)600 = 1.8 HP33,000 33,000

METRIC

$$P = \frac{W(U)S}{556} = \frac{1.524 (289) 3}{556} = 2.38 \text{ KW}$$

Note: The brake for this application must be able to dissipate the above power @ 32 RPM.

WK2 OF STEEL DISC

To determine the WK² of a given diameter of disc: multiply the WK² value below by the length of the disc. For hollow shafts, subtract WK² of the inside diameter from WK² of the outside diameter and multiply by length. The chart values were generated using the following.

ENGLISH METRIC $WK^2 = D^4$ <u> WK^2 </u> = 770 D⁴ Μ 5195 IN For Conversion, Lb $Ft^2 X .04218 = KgM^2$ Where $WK^2 = KgM^2$ Where $WK^2 = LbFt^2$ D = InD = MWK² (Lb Ft.²) DIAMETER (In) WK² (KgM²) DIAMETER (M) 2 .00310 .050 .0048 2-1/2 .00752 .060 .0100 .070 3 .0156 .0185 3-1/2 .029 .080 .0315 .090 .0505 .049 4 4-1/2 .079 .100 .077 .110 .120 .113 5 5-1/2 .120 .160 .177 6 .250 .130 .220 6-1/2 .345 .140 .296 7 .150 .390 .464 7-1/2 .611 .160 .505 8 .791 .170 .643 8-1/2 .808. 1.00 .180 .190 1.000 9 1.27 .200 1.23 9-1/2 1.55 10 1.93 .225 1.97 2.83 .250 3.01 11 12 4.00 .275 4.40 13 5.58 .300 6.24 14 7.42 .325 8.59 .350 15 9.75 11.55 16 12.61 .375 15.23 17 16.07 .400 19.71 18 20.21 .425 25.12 19 25.08 .450 31.58 20 30.79 .475 39.20 48.12 21 37.43 .500 22 45.09 .525 58.50 23 53.87 .550 70.46 .575 84.17 24 63.86 25 75.19 .600 99.79 26 87.96 .625 117.49 27 102.30 .650 137.45 28 118.31 .675 159.85 29 136.14 .700 184.88 30 155.92 .725 212.74 31 177.77 .750 243.63 201.8 32 .775 277.78 33 228.2 .800 315.39 34 257.2 .825 356.70 35 288.8 .850 401.94 36 323.2 .875 451.36 37 360.7 .900 505.20 38 401.3 .925 563.71 .950 627.17 39 445.3 .975 695.84 40 492.8 1.000 770.00

FOR CAST IRON MULTIPLY THESE BY 0.91. FOR ALUMINUM, BY .35 AND FOR COPPER, BY 1.14